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ABSTRACT

The Green’s function of the Poisson equation, and its spatial derivatives, lead to a

family of wavelets specifically tailored to potential fields. Upward continuation of the

field is seen to be identical to these wavelets’ scale change operation. The maxima at

all heights of the field’s horizontal gradients are termed the field’s multiscale edges.

A multiscale edge’s field strength variation and geometry contain information about

the geometry and type of discontinuity in the source. The assumptions that “rocks

have edges” and that these discontinuities are represented in the field’s multiscale

edges appears to collapse much of the ambiguity inherent in the inversion of potential

field data. One approach to inversion is purely visual, relying upon the way that

multiscale edges for dipping fault blocks sometimes “mirror” the fault geometry. A

second approach recovers the density contrast, the depths to top and bottom, and the

dip angle of an isolated synthetic dipping fault block by performing a search for

parameters that best recreate the observed multiscale edges. A third approach relies

upon naïve downward continuation. When a field is downward continued below its

actual source, a common assumption about the downward continuation operator is

violated, introducing well known oscillatory components to the previously smooth

result. Such oscillatory components tend to arise first on multiscale edges. By

following multiscale edges as we downward continue, we can pick the maximum

depth to a source (provided our “rocks have edges” assumption is true). Finally, since

the gravity field wavelet is (proportional to) a Green’s function for mass dipoles, we

can directly interpret the wavelet transform itself as being (proportional to) a

distribution of sources composed entirely of horizontal mass dipoles. Thus, multiscale

edges can be interpreted as the modes of the probability density of edges in the source

distribution generated by the wavelet transform.

Key Words:  potential field inversions, wavelets, multiscale edges, source

discontinuity structure.
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1 INTRODUCTION

The accurate inversion of potential field data for their underlying sources is widely

known to be both difficult and ambiguous.  In two previous papers (Boschetti et al.,

1999a;  Hornby et al., 1999) we demonstrated respectively the range of ambiguity and

a wavelet based analysis of potential fields.  In this paper, we combine the previous

two approaches and present a wavelet-based inversion of gravity data.

The aim of this inversion, like that of any geophysical inversion, is to decipher as

much information about the underlying rocks as possible from the limited set of

information available.  We would be satisfied to be able to delineate the geometry and

position of anomalous bodies, but would ideally like to be able to infer more

information (such as physical properties, or even chemical composition).  In practice,

the former goal proves difficult enough, while the latter goal seems unattainably

difficult.

1.1 Ambiguity

An independent analysis of ambiguity, resulting in the same nullspace formulation as

the one in Boschetti et al. (1999a), may be found in Strykowski (1996).

The fundamental mathematical difficulty with voxel based inversion of potential

fields arises because there are never enough measurements to constrain all of the

available degrees of freedom in the inversion.  While we describe the arguments

supporting this point of view at great length in Boschetti et al. (1999a), the quick way

to see this is via the following argument. Suppose a gravity survey is gridded to some

chosen resolution, and it is desired to invert for the underground structure at the same

(horizontal) resolution.  Obviously, the number of constraint equations is finite (call it

N, the number of cells in the gridded measurement field).  Equally obvious is the fact

that a single layer of underground source unknowns would exhaust the N constraints,

even if the inversion were only for density (as opposed to density and some other

physical property, such as acoustic velocity, correlated to the measurements).  More

layers would require more constraints, which have to come from somewhere.
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Nevertheless algorithms for multi-layered voxel inversion abound in the literature.

How could they possibly work?  The answer must lie in the prior information the

algorithms bring to bear upon solving the inversion problem. Clearly by the

“equivalent” layer argument in the previous paragraph, for multi-layered source

inversions the a priori information constrains more degrees of freedom than does the

information from the potential field measurement itself. Hence the nature and quality

of the prior information is crucial to the success of inversion.

Because the constraints provided by the potential field measurement are so weak,

relatively speaking, we also must be careful not to over-constrain the problem simply

from the prior information (Boschetti et al., 1999a).  A delicate balance is needed

between mathematical parsimony on the one hand and geological common sense on

the other.

We suggest that one such balance may be found in the statement “rocks have edges”.

Or, more precisely, the balance is found in its generalisation to “rocks have piecewise

constant densities/susceptibilities, punctuated by singularities”---which come in

varieties more plentiful than edges.

If we require our inversions to honour this statement, two very useful properties

emerge.  Firstly, such an a priori constraint is of widespread geological applicability,

and is easily verified for many regions under study.  Secondly, wavelet based

singularity detection and classification techniques can be used on the field itself,

which (as we shall see shortly) allows for inversions at the full horizontal resolution

of the gridded data, at an effectively continuous range of depths.

We emphasise that “rocks have edges” is an assumed constraint on the inversion

described here.  Inevitably, there will occur regions where such an assumption is not

justified, and any source inversion obtained from this method will be wrong purely

because this assumption has been violated.

Many families of wavelets exist, and many different kinds have been derived with

specific properties (e.g. Daubechies, 1992; Kaiser 1994), or employed for various

kinds of signal analysis (e.g. Mallat and Zhong, 1992; Sweldens, 1994; Strang and

Nguyen, 1996).
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One could perform a multiscale wavelet analysis on gravity data using any suitable

choice of wavelets (e.g. the Haar system, or its generalisation, the Daubechies family

of wavelets).  Instead, we choose to derive a wavelet specifically for potential fields

from the physics of the situation.  This allows us to “marry” potential field theory

with wavelet analysis, creating a natural synergy for analysing potential fields.

Our choice of wavelets has many benefits that, in our opinion, offset the difficulties

we encounter in using these non-orthogonal, continuous, non-product wavelets. For

example, the inverse wavelet transform has a direct physical interpretation in terms of

a “gravitational dipole source distribution”. This leads naturally to the understanding

that the wavelet transform we construct from our wavelets can be understood as a

probability amplitude for horizontal edges. (There are two dipole polarisations in the

x and y directions, forming two amplitudes, the sum of squares then forming the

probability density for edges). One can then interpret the multiscale edges as the local

modes of the associated edge probability density. This in turn leads us into the realm

of Fisher information principles (e.g. Frieden, 1999), and the associated theory of

inference in the presence of inherent unknowability in measurement processes. A vital

connection here is that the wavelets are harmonic functions, which can be supposed as

arising from a variational principle related to a Fisher information principal. Hence,

the nature of the prior hypothesis underlying the particular edge density distribution

constructed by the wavelet transform can be deduced. Nothing like this depth of

understanding could arise as clearly from the use of any other wavelet.

The foregoing also opens an entire field of investigation regarding the handling of

ambiguity in geophysical inversion systems. Whenever the wavelet transform can be

interpreted as some sort of distribution of objects or features that generate the field in

some way, then the particular wavelet basis we use, can be thought to induce an

information principle, which in turn leads to identification of the hypotheses.

2 MULTISCALE ANALYSIS OF POTENTIAL FIELD DATA

In this section, we review the theory of wavelets derived explicitly for potential fields.

The full development may be found in Hornby et al. (1999), and an alternative

development in Moreau et al. (1997).
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2.1 Definitions

Wavelet analysis pairs two related functions to analyse a signal. The first function

called the smoothing function )x(� , when convolved with the signal under study, can

be viewed as an operation that smoothes the signal to contain lengths dominantly

longer than some characteristic length (which is a property of the function � ). In one

dimension, to be admissible for wavelet analysis, �  must be non-negative,

differentiable, and obey

1dx)x( ���
�

. (2.1)

The second function – called the first order or “mother” wavelet function )x(�  – is

taken as the first derivative of the smoothing function. Convolution with this function

can be viewed as an operation that roughens the signal under study. In one dimension,

� � �( ) ( ) ( ),x x D xx� �1 . (2.2)

(Note that Dx denotes differentiation with respect to x, and that, in preparation for

more than one dimension, we have already introduced the comma sub-script

convention to denote differentiation in the classical tensorial style). From these

“mother” functions, wavelets are used to analyse a signal at multiple scales via the

following constructions.  The scaled version of �  is given by

� �� �s x s x s s( ) / ( / ),� �1 0 , (2.3)

where s is the rescaling factor. Similarly, the scaled version of �  is given by

� �� �s x s x s( ) / ( / )� 1   . (2.4)

The wavelet transform of a signal f(x)  is then defined by

W f s x f xs[ ]( , ) [ ]( )� �� , (2.5)

where ( )�  denotes convolution. Then we see that

W f s x f sD x sD f xx s x s[ ]( , ) [ ( )]( ) [ ]( )� � � �� �  . (2.6)
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This shows that the wavelet transform W f s x[ ]( , )  is, except for a scale factor s, the

first derivative of the signal smoothed at the scale s. The local extrema (with respect

to x) of W f s x[ ]( , )  thus correspond to rapid variations in ]f[ s�� , and hence can be

interpreted as regions of rapidly changing intensity, i.e., edges in the signal ]f[ s�� .

Now, ]f[ s��  is just the original signal f blurred or averaged at scale s by the filter

kernel �s. Consequently, the local maxima of ]f[W  correspond to edges in the signal

after blurring at scale s.  These edges, which become a function of scale s, are termed

multiscale edges.

2.2 Potential Field Wavelets

Following the development in Hornby et al. (1999), we start by considering the

gravitational potential on a horizontal plane due to a density distribution � ,

� �
� ��

�	
�	
�	

�����
��	�

2

0

2/12
0

220 ))zz()yy()xx((

zd)z,y,x(
ydxdG)z,y,x(V , (2.7)

where V is the potential, x,y are the horizontal coordinates, z=z0 is the (positive)

height of the plane, G is the Newtonian gravitational constant, and the density

distribution � is assumed zero for z > 0. (Positive z is “up”). From this we find that

the magnitude of vertical acceleration 
0zf  is

� �
� ��

	
	
	

	�
��	�

2
0

0

2/32
0

22
0

3,zz ))'zz()'yy()'xx((

'dz)'zz)('z,'y,'x(
'dy'dxGVg)y,x(f . (2.8)

The Green’s function for the magnitude of vertical acceleration is

K x y z
z

x y z
( , , )

( ) /�

 
2 2 2 3 2 . (2.9)

By direct calculation,

 
K x y z dx dy( , , ) �

�

�
2

2�
 

(2.10)

for any z > 0. Hence the integral of the function
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�

�z x y K x y z( , ) ( , , )�
1

2  
(2.11)

is unity for all z > 0.

From Equation (2.1) and the facts that z�  is non-negative for z>0 and differentiable,

we see that z�  is admissible as a smoothing function for a wavelet, with a

corresponding scaled version

�
�

�

sz

z

x y
sz

x y sz

s x s y s

( , )
( ( ) )

( / , / )

/�

 


� �

1

2 2 2 2 3 2

2

. (2.12)

Equation (2.12) is the 2 dimensional analogue of Equation (2.3). We therefore define

the scale s=1 by defining �  to be the normalised Green’s function associated with

height z0, that is

)y,x()y,x(
0z���  (2.13)

and

)s/y,s/x(s)y,x()y,x( 2
szs 0

����� � . (2.14)

As an aside, such a definition of scale appears problematic for gravity surveys

measured at ground level (z0 = 0). We proceed pragmatically. When such a situation

arises, we choose some nominal z0 (usually the interpolated grid or pixel spacing in

the horizontal directions) and use this length to define s=1.

In the two dimensional case, the first order wavelet is a vector-valued function, with

components given by

� � � � � �1
1

2
2� � � �, ,D Dx y   and   . (2.15)

The components

)s/y,s/x(s)y,x( i2i
s ��� � (2.16)

form a set of self consistent dilation equations for this 1st order wavelet.
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The x component of the 2-D wavelet transform of )y,x(f 0 (the acceleration at zero

height) is given by

W f s x y f x y

f sD

sD f

sD f

z z D f x y

s

x s

x s

x sz

x z

1
0 0

1

0

0

0

0

0

[ ]( , , ) [ ]( , )

[ ]

[ ]

( / ) ( , )

� �

� �

� �

� �

�

�

�

�

�

(2.17)

where s z z� / 0 .  A similar result follows for the y component, and hence the full

vector wavelet transform of the acceleration at zero height is

� � � �
W f s x z z f xz[ ]( , ) ( / ) ( )0 0� 
 , (2.18)

where
�

  denotes the 2-D gradient operator in the x,y plane, and W

�
denotes a 2-D

vector. In summary, we see that this particular wavelet transform of the acceleration

at zero height can be calculated at scales s > 1 from measurements at height 0zz �  as

follows,

1. upward continue the measured field to a level z sz� 0 ,

2. take the 2-D gradient in the (x,y) plane, and

3. multiply the resulting vector by the factor s.

Thus, no new processing software is needed to calculate these wavelet transforms.

The tools and techniques are present in existing systems.

By analogy with Equation (2.6), we define multiscale edges to be located where W
�

takes on local maxima along each gradient streamline.  Once again, this procedure

finds the multiscale edges corresponding to rapid variations in ]f[ s�� .

3 MULTISCALE EDGE BASED INVERSION

We now turn to inverting potential fields based on the information contained in their

multiscale edges.  Recall, from the first section, that we propose inverting based upon

the assumption that “rocks have edges”.  Hornby et al. (1999) derive the geometry
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and amplitude scaling relations for the multiscale edges produced by various types of

isolated source singularities. Using these relationships, we simply assume that any

multiscale edge found in the potential field is associated with the best fitting type of

singularity in the rock. This assumption is analogous to a common strategy employed

by potential field interpreters, where they correlate “visual boundaries” in the field

measurement with the boundaries of geological units. Indeed, emulation of this

interpretation procedure was part of the motivation that led us to these investigations.

Note that the assumed correlation between edge and singularity could be violated in

any number of ways. For example, isostasy can naturally lead to compensation that

tends to damp anomalies. Such compensated singularities may well remain

undetected. On the other hand, continuous variations of density will sometimes

masquerade as singularities. Any spherical density anomaly will look like a point

source.

3.1 Visual “Inversion”

The multiscale edges due to a horizontal layer truncated by a dipping fault plane can

be partially “inverted” through a purely visual procedure (i.e. no computation is

required). Section 3.2.1 of Hornby et al. (1999) describes the theory for the scaling of

amplitude with height, and Figure 1 through Figure 3 display results for some

numerical synthetics.

Note that the visual result is that the multiscale edges move (with upward

continuation) in the direction of downward dip of the fault. Note also that the vertical

asymptote of the multiscale edge moves farther from the surface intercept with

decreasing dip angle.  Crudely speaking, this class of multiscale edge behaves as if

the ground surface is a (distorting) mirror. An interpreter can infer both the sense and

magnitude of dip simply from a visual appraisal of the multiscale edge.
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Figure 1. Faults dipping 45 degrees and multiscale edges at different heights.

                    

Figure 2. Faults dipping 60 degrees and multiscale edges at different heights.
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Figure 3. Vertical and almost vertical faults and multiscale edges at different heights.

3.2 Quantitative Inversion

We now turn to a numerical inversion for the position and amplitude of the multiscale

edge.  The aim is to recover four parameters (the dip, density contrast, and depths to

top and bottom) for the synthetics of Figure 1 through Figure 3. The inversion is cast

as an optimisation, employing a cost function consisting of a least square fit of

candidate edges against the target edge.

In general, the problem could be nonlinear, with multiple local minima.  We employ a

variant of a Genetic Algorithm (GA) described in Boschetti et al. (1996). The GA is

run with a population of 50 individuals, for 50 generations, with 0.8 and 0.1 as

crossover and mutation rates, respectively. All tests are run five times. The best fitting

results are shown in Table 1.

The tests have been run both on noise-free and noisy data. There were two noisy

trials. The first set added 10% white noise to edge locations and values, and the

second set added 20% noise. These noisy data correspond to relatively high noise

levels in the measured profiles. Even so, edges remain identifiable.

The noise free cases give excellent results.  Only small errors remain in the estimation

of the bottom depth, clearly the hardest parameter to determine. The 10% noise case

generates some errors in the estimation of the density contrast, while the geometry of
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the fault is still well reconstructed. The 20% noise case also generates reasonable

results, although the errors, as expected, are now larger. In particular, the dip of the

fault is reconstructed within a “geologically reasonable” level of confidence, as is the

depth to the top.

3.3 Visual Analysis of Solution Space

The ease with which the above inversions recovered the true parameters leads one to

suspect that the cost function for this particular problem has a relatively simple

minimum distribution (instead of multiple local minima of competitive amplitudes).

Since the parameter space is “only” four-dimensional, we have a chance of

successfully visualising the result.  We proceed, first reducing the parameters from

four to three by fixing the thickness of the fault, varying the other three parameters,

and calculating the resulting misfit.

In Figure 4 through Figure 7, each window represents the misfit (represented in

greyscale) for a different value of density contrast. Density contrast increases from 0.1

to 0.45 in steps of 0.05 from left to right, then top to bottom (i.e. in “reading order”

for English). Within each window, the dip varies in the X direction (from �90	  to

�90
  in  �5.2  steps),  and the depth to the top varies in the Y direction (from -10 to 0

units in 0.25 steps).

 

Figure 4. a) Shallow fault, dip 45 degree.       b) Deep fault, dip 45 degree.
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Figure 5.  a) Deeper fault, dip 45 degree.         b) Deep fault, dip 90 degree.

  

Figure 6. a) Deep fault, dip 45, +10% noise.   b) Deep fault, dip 45, +20% noise.
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Figure 7. a) Deep fault, dip 45, thicker fault.   b) Deep fault, dip 45, thinner fault.

The figures show that the inversion has a relatively simple global minimum for each

case.  Secondary minima do exist, near the extremes of +/- 90 dips, but even a local

optimiser is likely to perform well on these inversions. In view of the ambiguity

domain discussed in Boschetti et al. (1999a), this is a somewhat remarkable result.

Recall that the only assumptions involved were that the body was a 2-D fault-

truncated horizontal layer, of constant density contrast.

The information contained in multiscale edges is sufficient to distinguish between

simple source singularities. We are exploring a three part inversion strategy based

upon 1) classifying a multiscale edge, 2) isolating it, using the field reconstruction

properties discussed in Hornby et al. (1999), and 3) inverting it, in much the same

way that we performed the fault-bounded horizontal layer inversion.  Results based

upon this strategy will be reported elsewhere.

4 MULTISCALE EDGE TOPOLOGY METHOD

4.1 Motivation

Consider the field due to an infinitely thin, band-like body of constant density contrast

that extends to infinity in the y direction (see Figure 8a). The density contrast along

the x axis is given by a step function (see Figure 8b). The constant density assumption

is actually not required, but makes the presentation of the method more intuitive.  Let
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the body be at height 0zd � . The gravity response at zero distance above the body is

equivalent to the density distribution itself, to within a constant scale factor.  Above

the surface, the field is the source distribution blurred by the wavelet smoothing

function, to within the same constant scale factor. Figure 9 shows such a family of

upward continued gravity profiles.

0

0.2

g/cm**3

Figure 8. Infinitely thin, flat source (a) and its density distribution (b). The density

contrasts at the borders of the source are characterised by a step function.

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 9. Density distribution (bottom line in bold) and gravity response upward

continued at different levels.
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In addition, the gravity profile at a certain height can also be regarded as an equivalent

planar density source of further upward continued profiles (modulo the same constant

scale factor as before).

Now, if we analyse the profiles in Figure 9 from top to bottom (i.e. downward

continue the profiles) they get sharper.  Conceptually, when we reach the source level,

the profile would be the perfect step function of  Figure 8b.

If we were to downward continue even farther (in the Fourier domain), the profile

would become over-sharpened and begin to exhibit something akin to Gibbs

phenomenon (Figure 10).  The reason for this over-focusing is roughly as follows.

Define the 2-D Fourier transform by

xd)xki2exp()x(f)k(f̂
2

�����
��	� �

�

. (4.1)

It can be shown (e.g. Craig, 1986) that the transform of the normalised Green’s

function is

� ( ) exp( )� �z k k z z
� �

� 	 �2 0 . (4.2)

When we downward continue from some level 0z  to dz  say, conceptually, we have

first upward continued from the source at dz  to 0z , and then downward continued the

field. The net effect is that of multiplying and then dividing the Fourier transform of

the source by Equation (4.2) with d0 zzz 	� . If, however, we attempt to downward

continue past the source, the net effect will be a signal corresponding to the source

term multiplied by Equation (4.2) for some 0z � . This is, of course, incorrect. In fact,

the z appearing in Equation (4.2) should actually be z , and the whole expression

should change sign at z=0 to reflect the opposite direction of the acceleration as the

source is passed. (The derivation of  Equation (4.2) requires a different choice of pole

and contour integral in the complex zk  plane for the case z<0.)  The effect of such

over-continuation is to introduce an oscillatory component into what is normally a

smooth (elliptic) Green’s function, resulting in a crossover into a regime in which

oscillatory density functions begin to arise.
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-1

-0.5

0

0 5 10 15 20 25 30 35 40 45 50 55 60

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

20 22 24 26 28 30

Figure 10. a) Density distribution (bold profile) and gravity response downward

continued at different levels. b) Notice that, below the source level, the density

contrast becomes sharper than a step function (magnification).
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Physically, such over-focused density wiggles could, in principle, be real. However,

applying the “rocks have edges” assumption (that sources are piecewise constant

density distributions, punctuated by singularities) we reject these Gibbs-like

phenomena as geologically unlikely, and interpret the behaviour as the signature for

the downward continuation plane passing through the source. Hence, by developing

an algorithm to identify these over-focused  wiggles, we could invert for the depth to

the source. Such an algorithm might be framed along the lines of: 1) downward

continue the current field by a constant increment, 2) check for the presence of the

over-focused wiggles, and 3) if there are wiggles, mark a source at that level and

position, otherwise go to Step 1.

4.2 The ‘Trifurcation’ Point

The previous section restates a typical application of downward continuation. An

anomalous field is downward continued until the anomaly comes into sharpest focus.

The amount of downward continuation is then taken as the depth to the source. This

section describes an algorithm for automating and localising that procedure using

multiscale edges.

Multiscale edges offer a particularly straightforward method for identifying the over-

focused wiggles. Because the wiggles of the type shown in Figure 10 create new local

extrema in the profile, there are new local extrema in the derivative too, and the

wavelet transform excels at picking these up.  The multiscale edges split into three

branches (“trifurcate”). Figure 11 displays the horizontal derivative of the topmost

profile of  Figure 10. The location of the two extrema give the position of the edges.

In Figure 12 the wavelet transform of the gravity profiles at different heights is shown

for the left edge. Note that at heights above or equal to the depth of the source there is

only one edge. However, at levels below the source there are three edges.
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-0.1

-0.05

0

0.05

0.1

5 10 15 20 25 30 35 40 45 50 55 60

Figure 11. Horizontal derivative of the gravity profile in the above pictures. The

location of the two extrema give the position of the edge.

-0.2

0.3

0.8

1.3

20 22 24 26 28

Figure 12. Wavelet transform of the gravity profiles at different heights, for the

horizontal position close the left border of the source. The near-vertical dark lines

show the location of the multiscale edge.
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4.3 Inversion of Synthetic Examples

In the next two figures, we show inversions for some 2-D synthetic sources

(represented by the white outlined bodies). All density contrasts are 0.2 g/cm3. The

profile is modelled by 128 points equally spaced, notionally at an interval of 1 km.

The inversion domain contains 32 nodes in the vertical direction, with a spacing of

100 m. The figures are vertically exaggerated. Notice the high dimensionality of the

inversions (4096 degrees of freedom). They would have been computationally

expensive (if feasible) had they been approached in a traditional - voxel based -

manner.

Figure 13. Inversion with the trifurcation method. a) is the top pair of figures,

schematically modelling a truncated dipping fault.  b) is the middle pair, another

truncated dipping fault.  and c) is the bottom pair with a deeper truncation. The white

objects in the left hand column represent the vertical sections of the sources used to

generate gravity profiles. The sources have a density contrast of 0.2 g/cm3 against the

background. Each profile is sampled by 128 points equally spaced at a notional

interval of 1 km. The models and the inversions contain 32 layers in the vertical

direction, with a spacing of 100 m. The outline defined by the “picks” from the first

trifurcation of an edge are shown in the right hand column. The figures are vertically

exaggerated.

In Figure 13a, the inclined fault is picked reasonably well. At the left side, the

technique has trouble with the vertical boundary. It overestimates the depth to the top.

The exact location of the trifurcation point at the source depth occurs only in the

perfect case of an infinitely thin source. A thicker source can be thought of as the

summation of many infinitely thin layers and the resulting gravity profile is the
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summation on the effect of each layer. The net result is a logarithmic singularity in

the gradient of the acceleration, which is somewhat weaker than the singularity found

at the edge of an equivalent layer type solution. Consequently, the onset of oscillatory

behaviour is somewhat delayed.

In Figure 13b we see the same source but upside down and deeper. Similar comments

apply as for the earlier case. In Figure 13c we show both a thicker body and a steeper

fault, truncated at a deeper level. The algorithm does not perform as well in this more

challenging case, simultaneously overestimating the depth to the top, underestimating

the depth to the bottom, and having trouble resolving the dipping boundary. While the

result is not as good as for Figure 13a or b, the original shape of the body is

approximated by the inversion.

A last experiment is shown in Figure 14. The algorithm here is modified to join two

consecutive trifurcation points in order to isolate a body. Once this is done at one

level, a density contrast is assumed, the effect of such a ‘slice’ is calculated and

removed from the original profile, and the downward continuation proceeds.

The horizontal positions of the bodies are reconstructed quite well. However, the

depths are slightly overestimated because the bodies are characterised by vertical

contacts. Currently this algorithm works only for such vertical contacts and research

is on-going for a further generalisation. Downward continuation noise is still evident

in the black and white stripes underneath the bodies. This indicates the need for a

better method for estimating the ‘slice’ to be stripped off before downward

continuing.
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Figure 14. a) Synthetic model representing four block-like sources at different depth.

b) Result from the inversion with the reconstruction of the bodies. The white stripes at

the bottom are due to noise in the downward continuation.

We show the inversion experiments in Figure 14 to illustrate the potential of this

approach to inversion. However, we believe that the technique shown in Figure 13 is

more immediately useful.

5 INVERSE WAVELET TRANSFORM METHODS

The wavelet transform is an invertible transformation, the inverse being given by

(Hornby et al., 1999)

 � � ud)u,s](f[W),xu(
s

ds
4)x(f

0

0s0
2

2

�������

� �
�

�

�
	��  .      (5.1)

Now, apart from normalisation by multiplicative factors of s, G, �2  and so on, the

components )y,x(i
s�  of the vector-valued wavelet are essentially the Green’s

functions for a mass dipole source. Thus, if we write Equation (5.1) in physical terms

(i.e. put back z and the physical constants and lengths, etc.) we can interpret the

equation as the field at height z=0 arising from a superposition of horizontally

oriented gravitational dipoles. That is, the wavelet transform itself is proportional to a

possible source distribution.  We can now contemplate a variety of methods for

implementing stable downward continuations and layer stripping based upon this
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insight.  For example, suppose we were to downward continue Equation (5.1). Then,

in the integration, some of the values of s appearing in the integration would become

negative, representing dipoles that are passed by the downward continuation plane.  If

we simply zero such wavelet coefficients, then we effectively strip these sources from

the model constructed by the wavelet transform during the downward continuation

process.  Many variations on this theme suggest themselves, and we hope to report on

this and other consequences that arise from this simple observation.

Finally, we note that the inverse transform (5.1) has a null space. This is a direct result

of the linear dependence of the wavelets, regarded as a basis for functions in the (s,x)

domain. It is easy to see that this null space is precisely the set of gravitational dipole

source distributions that yield zero gravitational field, and is therefore, to all intents

and purposes, the generator of the ambiguity domain of the original inversion

problem. Thus, we have a direct characterisation of the ambiguity in the inversion

problem as the null space of the inverse wavelet transform. In practice, it has proven

useful to take this one step further, and consider the reproducing kernel of the wavelet

transform, and its associated null space. Although the null space of the reproducing

kernel turns out to be slightly larger than that of the inverse wavelet transform, the

difference is trivial. However, the reproducing kernel has the added advantage of

being a projection operator in the wavelet function space, and can therefore be used to

construct other source distributions, obeying different a priori hypotheses, in a

straight forward manner.

6 DISCUSSION

The inversion techniques described in Section 4 rely upon Fourier domain downward

continuation, which is well known to be an unstable process. Though the process

generating the over-focused wiggles described above might not be the only source of

instability, it is unquestionably a principal cause.

While the Nyquist mode grows exponentially faster in z� , it interacts with the rest of

the signal’s spectral content, and requires some z�  before dominating enough to

generate a slope (edges) in the downward continued signal.  Once initiated, a wiggle

instability at any position in the data spreads throughout the entire downward

continued data set with increasingly negative z� .  Clearly, this is the source of the

arcuate “striping” noise in Figure 14.
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The wiggle instability may also cause problems if multiple bodies are buried at

different depths. Potentially, any deeper body might be masked by the noise generated

by the shallower body’s wiggle instability.  Because of the field reconstruction

properties of multiscale edges (Mallat and Zhong, 1992), one way around such

problems might involve isolating anomalies by reconstructing fields due solely to the

edge(s) of interest.  Initial experiments in this direction have been presented in

Boschetti et al. (1999b).

An additional problem related to wiggle instabilities might be found in real-world

potential field surveys.  Few surveys, if any, exhaustively sample the field on the grid

on which final analysis takes place. Instead, the field is sampled at irregular locations

(traverses, flight lines) and interpolated to the grid. While there are many techniques

available to perform the interpolation (e.g. Briggs, 1974; Horowitz et al., 1996), we

know of no technique that enforces the physical constraint that sources must exist

underground and not above. (An exception is equivalent source gridding, which is

unphysical in a different way.) The interpolation itself might lead to spurious wiggle

instabilities, some of them above ground. In this context, we could in principal use

wavelet based interpolation schemes to enforce the "no floating sources" constraint on

the interpolation itself - instead of trying to "process them out" after doing a bad

interpolation. We see then that wavelet based tools have great potential applicability.

Potential field wavelets and the multiscale edges they reveal in data yield a novel,

useful, and intuitively appealing avenue for constructing inversion techniques.

Starting with a simple assumption (“rocks have edges”), the ambiguity domain

inherent in potential field inversions can sometimes be reduced to almost manageable

proportions.

The realisation that the inverse wavelet transform implies that the wavelet transform

is itself a possible source distribution, and the identification of the null space of the

inverse transform as the generator of the ambiguity domain, both serve to increase our

understanding of the way in which a choice of basis (Fourier, wavelet , etc.) interacts

with inherent unknowability, a priori hypotheses, and probability densities.
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8 TABLE

Type % Noise Density Dip Depth to Top Depth to Bottom

Synthetic

GA Inversion

--

0

10

20

0.2

0.2

0.16

0.11

45

45

40

40

-1.0

-1.1

-0.7

-0.3

-2.0

-2.1

-1.9

-2.1

Synthetic

GA Inversion

--

0

10

20

0.22

0.20

0.21

0.34

-27

-25

-25

-25

-7.0

-6.9

-6.2

-6.4

-8.0

-9.1

-7.2

-7.0

Synthetic

GA Inversion

--

0

10

20

0.2

0.2

0.23

0.23

90

90

90

90

-1.0

-1.2

-1.0

-1.0

-4.0

-3.7

-3.6

-3.6

Synthetic

GA Inversion

--

0

10

20

0.11

0.11

0.35

0.35

80

80

80

80

-8.0

-8.0

-7.6

-7.5

-9.0

-9.0

-7.9

-7.8

Table 1: Results from Genetic Algorithm inversions for source parameters from

multiscale edges.


